Mast cells are sentinels in tissues. They respond to invading pathogens by releasing their stored histamine, enzymes and heparin. The heparin modifies the activity of enzymes and cytokines.
What are mast cells and why are they loaded with heparin (left)? Mast cells start in the bone marrow, like many other components of the immune system. They then move into the blood stream and offload in most of the tissues that typically encounter pathogens and parasites. Thus, the typical commercial source of the mast cell-produced heparin is pig intestines or cow lungs, i.e. since heparin is made and stored in mast cells and mast cells are abundant in lungs and intestines, those are the sources of crude heparin. Proteins bound to the crude heparin are removed as the heparin is cleaned up to be used as an anti-clotting drug.
Mast cells are sentinels near the surface of mucus membranes that line the airways of the lungs and the digestive tract. Diseases of the lungs and intestines, e.g. asthma and inflammatory bowel disease, that have an inflammatory and/or autoimmune component yield high levels of mast cells in the affected tissues. Pathogens or parasites coming in contact with mast cells trigger the sudden release of vesicles full of histamine, enzymes and heparin.
Heparin stored in vesicles in mast cells can also be readily visualized by staining the mast cells in microscope sections using the fluorescent dye berberine (left). Berberine binds quite specifically to heparin and is also used in herbal medicine as a treatment for many inflammatory diseases, such as arthritis. It would be very interesting to know whether berberine has any effect on asthma.
Mast cells display a variety of receptor proteins on their surfaces. Protein receptors work by binding target molecules, ligands, changing their shapes and transmitting a signal through the cytoplasm. A key aspect of the signal transmission is the requirement for the ligand binding to bring together receptors in pairs. The pairing of receptors during ligand binding is facilitated by the binding of heparin to both ligands and receptors. Two ligands, e.g. cytokine peptides, such as TNF, can bind to adjacent sites on a heparin molecule and this pair can then bind to two receptors brought together on the surface of a cell. The receptors bind to the ligand and to the heparin. Some ligands will bind to their receptors without heparin, but the presence of heparin greatly accelerates and intensifies the reactions.
Heparin is synthesized in the vesicles of mast cells and binds to enzymes, e.g. tryptase, also present in the vesicles. The tryptase enzyme proteins form tetramers with heparin wrapped around the edge (left, edge view showing one pair of tryptase proteins with heparin bound diagonally to blue heparin-binding domains; other pair of tryptase proteins is hidden).
Interestingly the active site for each tryptase in the tetramer faces a hole where the four proteins come together. Thus the tetramer can degrade small peptides, but large proteins cannot get access to the blocked active sites. Monomers change shape and are no longer active.
Activated mast cells release their vesicle contents with some enzymes active and their bound heparin is replaced by the heparan sulfate attached to adjacent cells. Other enzymes are initially inactive bound to heparin and are activated by dissociation of the heparin once they are released from the vesicles. In both cases some of the heparin is released from the mast cells into the surrounding tissue. The free heparin can bind to cytokines released from other cells and the combined pairs of cytokines bound to heparin can in turn bind to appropriate receptors on other cells. The abundance of heparan sulfate bound to other cells will determine whether additional heparin is required for receptor responses from particular cytokines. Cells with abundant heparan sulfates will sweep heparin binding ligands toward receptors aggregated in lipid rafts, as the heparan sulfate proteoglycans are internalized for recycling.
Mast cells can be activated by allergens, because of IgE receptors. IgEs are antibodies that trigger allergic responses. The IgEs produced by antibody producing B lymphocytes circulate in the blood serum and bind to mast cell receptor proteins. Allergen molecules bind to the IgE-receptor complexes, trigger the activation of the mast cells and release histamine. The histamine binds to receptors on other cells and produces the symptoms of allergy or asthma.
Heparin can be sprayed into the lungs of asthma sufferers and reduce symptoms. This suggests that the ratio of heparin to cytokines is important and that cytokine signaling required for asthma episodes of airway constriction can bind individually to different heparin molecules and minimize mast cell triggering and histamine release.
Asthma also responds to a general decrease in chronic systemic inflammation. Thus, an anti-inflammatory diet and lifestyle, can reduce episodes and potentially reverse symptoms. Omega-3 oils and glucosamine, for example are both effective.
Tryptase model: Sommerhoff CP, Bode W, Pereira PJ, Stubbs MT, Stürzebecher J, Piechottka GP, Matschiner G, Bergner A. 1999. The structure of the human betaII-tryptase tetramer: fo(u)r better or worse. Proc Natl Acad Sci U S A 96(20):10984-91.
Berberine staining of mast cell heparin: Feyerabend TB, Hausser H, Tietz A, Blum C, Hellman L, Straus AH, Takahashi HK, Morgan ES, Dvorak AM, Fehling HJ, Rodewald HR. 2005. Loss of histochemical identity in mast cells lacking carboxypeptidase A. Mol Cell Biol. 25:6199-210.
Subscribe to:
Post Comments (Atom)
2 comments:
why dont we produce by intiating mast cell differentiation from stem cell source?
شركة نقل عفش بخميس مشيط
شركة تنظيف موكيت بخميس مشيط
شركة تنظيف مجالس بخميس مشيط
شركة تنظيف مسابح بخميس مشيط
شركة تنظيف خميس مشيط
شركة تنظيف ستائر بخميس مشيط
شركة مكافحة الفئران بخميس مشيط
شركة مكافحة حشرات بخميس مشيط
شركة رش مبيدات بخميس مشيط
شركة عزل اسطح بخميس مشيط
Post a Comment